\square

Fifth Semester B.E. Degree Examination, July/August 2021 Digital Signal Processing

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer any FIVE full questions.
 2. Use of prototype tables are not permitted.

1 a. Derive the DFT expression fromDTFT expression.
(05 Marks)
b. If
$x(n)=1 \quad 0 \leq n \leq 5$ $=0$ elsewhere
and $x(z)$ its z transform. If $x(z)$ is sampled at $z=e^{j \frac{2 \pi}{4} k} 0 \leq k \leq 3$. Find $y(n)$ obtained as IDFT of $x(k)$.
(07 Marks)
c. Prove the following identities:
i) $\mathrm{W}_{\mathrm{N}}^{\mathrm{K}+\mathrm{N}}=\mathrm{W}_{\mathrm{N}}^{\mathrm{K}}$
ii) $\mathrm{W}_{\mathrm{N}}^{\mathrm{K}+\frac{\mathrm{N}}{2}}=-\mathrm{W}_{\mathrm{N}}^{\mathrm{K}}$
iii) $\operatorname{DFT}(\delta(\mathrm{n}))=1$
iv) $\operatorname{DFT}\left[\mathrm{x}^{*}(\mathrm{n})\right]=\mathrm{X}^{*}(\mathrm{~N}-\mathrm{K})$
(08 Marks)
2 a. State and prove the time convolution property.
(06 Marks)
b. Find the 4 point DFT of $x(n)=2.5,1-\mathrm{j} 2,-0.5,1+\mathrm{j} 0.5$ using the matrix method. ($\mathbf{0 6}$ Marks)
c. Let $X_{p}(n)$ be a periodic sequence with fundamental period N. Let $X_{1}(k)$ denote the N-point DFT of one period of $X_{p}(n)$ and $X_{3}(k)$ be the $3 N$ point DFT of three periods of $X_{p}(n)$. What is the relationship between $X_{1}(\mathrm{k})$ and $X_{3}(\mathrm{k})$.

3 a. Perform the linear convolution of the following sequences by overlap and add method.
$x(n)=1,-2,3,2,-3,4,3,-4 \ldots$. and $h(n)=1,2,-1$
use 5 point circular convolution. Verify by the direct method of linear convolution.
(10 Marks)
b. Calculate the number of complex multiplications and complex additions for $\mathrm{N}=256$ for both the direct DFT and FFT.
(05 Marks)
c. Draw the basic Butterfly diagram of radix-2 DIT FFT and DIF-FFT.
(05 Marks)
4 a. Given a sequence $x(n)=0,1,2,3,4,5,6,7$ determine $X(k)$ using DIT FFT. Show the intermediate values.
(10 Marks)
b. Compute the IDFT of the sequence $\mathrm{X}(\mathrm{k})=12,0,0,0,4,0,0,0$ using DIF - FFT. (10 Marks)

5 a. Design an analog band pass filter to meet the following specifications:
i) $\mathrm{f}_{\mathrm{u}}=20 \mathrm{kHz} \quad \mathrm{f}_{\mathrm{L}}=50 \mathrm{~Hz}$
ii) $\mathrm{k}_{\mathrm{p}}=-3.0103 \mathrm{db}$
iii) Stop band attenuation of atleast 20 db at 20 Hz and 45 kHz .
(12 Marks)
b. Find the order of the filter and pole locations for a Chebyshev analog low pass filter that has a 3 db PB ripple cut-off of $100 \mathrm{rad} / \mathrm{sec}$ and a stop band attenuation of 25 db or greater for all radian frequencies past $250 \mathrm{rad} / \mathrm{sec}$.
(08 Marks)

6 a. An LTI system is described by the equation $y(n)+2 y(n-1)-y(n-2)=x(n)$ determine the cascade and parallel realization.
(12 Marks)
b. Determine the lattice co-efficients corresponding to the FIR system with system function $\mathrm{H}(\mathrm{z})=1+\frac{7}{9} \mathrm{z}^{-1}+\frac{3}{5} \mathrm{z}^{-2}$ and realize it.
(08 Marks)

7 a. The system function of the analog filter is given as $\mathrm{H}_{\mathrm{a}}(\mathrm{s})=\frac{\mathrm{s}+0.1}{(\mathrm{~s}+0.1)^{2}+16}$ obtain the system function of the digital filter using bilinear transformation which is resonant at $\mathrm{w}_{\mathrm{r}}=\pi / 2$.
(08 Marks)
b. A Chebyshev filter of order 3 and unit band width has a pole at $s=-1$. Find the other two poles. The analog filter is mapped to the z domain using bilinear transformation with $\mathrm{T}=2$ find $\mathrm{H}(\mathrm{z})$.
(12 Marks)
8 a. Compare FIR and IIR.
(05 Marks)
b. A low-pass filter is to be designed with the following desired frequency response $\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{jw}}\right)=\begin{aligned} & \mathrm{e}^{-\mathrm{j} 2 \mathrm{w}}, \frac{\pi}{4} \leq \mathrm{w} \leq \frac{\pi}{4} \\ & 0\end{aligned}$
determine the filter co-efficients $\mathrm{h}(\mathrm{n})$ if the window function is defined as $\mathrm{w}(\mathrm{n})=\begin{array}{ll}1 & 0 \leq \mathrm{n} \leq 4 \\ 0 & \text { otherwise }\end{array}$
Also determine the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)$ of the designed filter.
(15 Marks)

